Efficient calculation of g-factors for CG-SENSE in high dimensions: noise amplification in random undersampling

نویسندگان

  • Mehmet Akcakaya
  • Tamer A Basha
  • Warren J Manning
  • Reza Nezafat
چکیده

Background SENSE [1,2] is one of the most used parallel imaging techniques. In [1], uniform undersampling was employed to efficiently reconstruct an unalised image, whereas in [2], a conjugate gradient-based method (CG-SENSE) was used for reconstruction with arbitrary trajectories. SENSE framework allows the calculation of g-factors, characterizing the noise amplification for a given k-space trajectory and coil configuration [1]. However, calculation of g-factors for arbitrary trajectories in high dimensions is time-consuming [3]. Furthermore, noise characteristics of random undersampling, used in compressed sensing, is not wellunderstood. In this work, we use a Monte-Carlo (MC) method for fast calculation of g-factors for CG-SENSE similar to [4,5] and apply it to random Cartesian undersampling trajectories. Theory: SENSE involves a prewhitening step [1,2], thus without loss of generality, we assume white noise. SENSE reconstruction solves minm ||y Em||2, where E is the system matrix, and y are the undersampled measurements. The g-factor for the k voxel is given by gk = √([E*E] -1 k,k [E*E]k,k). Inverting E*E is not feasible in high dimensions. Instead we note the gk corresponds to the k diagonal of the reconstruction noise covariance matrix (for normalized coil sensitivities), where nrecon = (E*E) E*nmeas, and nmeas is measurement noise with identity covariance matrix. We calculate the sample correlation matrix using a MC approach (since sample mean goes to 0), as 1/(p-1)∑p n p recon (n p recon)* for p instances of nrecon. Note we only calculate and store the diagonal elements of this matrix, significantly increasing efficiency. Methods The MC method was first verified in a numerical simulation, where the g-factor was explicitly calculated for a 2D coil configuration, to determine how many MC simulations suffice. Whole-heart imaging was performed with an isotropic resolution of 1.3 mm using a 32-channel coil array. Two 4-fold accelerated acquisitions were performed, one with uniform undersampling (2 × 2 in the ky-kz plane) and one with random undersampling. Coil sensitivity maps were exported. Images were reconstructed using SENSE (for uniform) and CG-SENSE (for both). g-factors were also calculated with the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising Sparse Images from GRAPPA using the Nullspace Method (DESIGN)

To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with GRAPPA alone, the Denoising of Sparse Images from GRAPPA using the Nullspace method (DESIGN) is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from unifo...

متن کامل

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

متن کامل

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI.

First-pass cardiac perfusion MRI is a natural candidate for compressed sensing acceleration since its representation in the combined temporal Fourier and spatial domain is sparse and the required incoherence can be effectively accomplished by k-t random undersampling. However, the required number of samples in practice (three to five times the number of sparse coefficients) limits the accelerat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014